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PROPERTIES OF A DIFFERENTIAL GAME'S POTENTIAL* 

A.I. SUBBOTIN and N.N. SUBBOTINA 

A position differential game with fixed termination instant is examined. Stability 
properties are investigated, consisting mainly in the formulation of necessary and 

sufficient conditions satisfied by the differential game's value function (potential). 

The infinitesimal form of the stability properties leads to differential inequalit- 

ies generalizing the fundamental equation for the potential to the case when the 
value function is nondifferentiable. As a corollary to the necessaryandsufficient 
conditions obtained for the differential game's potential, corresponding resultsare 
presented for the optimal control problem. The paper relies on the results from /l 
-7/, borders on the studies in /8-12/ and continues the work in /13-15/. 

1. We examine a differential game the motion in which is described by the equation 

5' (t) = f (t, z (Q> u (t)? v (Q) (1.1) 

where u (t) E P CT R", v(t)~ Q c R9 are the controls of the first and second players, P and Q 

are compacta and the functions f(.) : (-co, 81 :,: R” x P x Q e H” satisfy the usual conditions 

(see /3,4/J. We assume that 

minmax s'f(t,x, n,~) = max mins'f(t, I, II, v), ((t. z, s) E (-m, 61 x Rn X Rn) 
U'_P ?'EL, VEV UtzP 

(1.2) 

where s’f is the scalar product of vectors s and f. The differential game's payoff is pre- 

scribed by the equality 

v (x (.)) r (7 (x (6)) (1.3) 

Here 0 (.) : I?“++ 12 is a continuous function, 6 is the f ixed game termination instant. 

In accord with the formalism in /4/ we identify the strategies of the first and second 

players with the arbitrary functions U(.):(-oo,S] x R” - P, V(.): (- 00,61 X R* ++ q. The mo- 

tions generated by such strategies are determined by a limit approach from the corresponding 

sequences of Euler polygonal lines. The set of motions generated by strategy Uand departing 

from the point z(t,)-.z:, is denoted X (t,,z,, u). The sheaf X (t,,z,, V) of motions corresponding 

to strategy V is denoted analogously. It has been established /4/ that a position different- 

ial game has a value, i.e., 

minmaxy (X(t,,x,, U)) = max min y (X (t*, J*, 1,‘)) = co (t*, 5*) 

mZx y (X) = max,(.) y (z(.)P ,min y (X) = mjn~(.,y(s(.)),r(.)r=X 

The quantity c,, (1,, z*) is named the value of the differential game, defined for the initial 

position (t*, z*). The function (t*, z*)++ c0 (t*, x*) is called the value function or the potential 

of the differential game. The investigation of the properties of the potential and of the 

methods for computing it is of material interest since by having the potential available we 

can determine relatively simply the players' optimal strategies (see /2,4/, for example). 

Let us note a necessary condition satisfied by the potential of differential game (l.l)- 

(1.3). Let the function c(.): (- 00,61 x R” H R satisfy in each bounded domain G c(- m, S] :,' 

H" the Lipschitz condition 

/ c (1’. x1) -- c (t’, z’) 1 -r; h (G) [ 1 t’ - tL / + // cc1 + ~9 /Ii, h = const (1.4) 

The collection of such functions is denoted by the symbol Lip. It can be shown that the pot- 

ential cl,(.) of game (l.l)- (1.3) belongs to class T,ip if the payoff function o(.) satisfies 

a Lipschitz condition. By the Rademacher theorem /7/ the function c(.)E Lip is differentiable 

almost everywhere. The function c(.)is called a generalized solution of the fundamental 

equation of differential games theory if the equality 

dc (t*. 2J at _ minmaxf'(t,,I,,a,v)grad,c(f,,s,)r; 0 (1.5) 
?lFP r.FQ 

grad,c(t,,s,)= (a~jt,,s,)/az,, . . . , acv,, 5*)i%J 
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is fulfilled at each point (t,,x,) at which the function c(.)is differentiable. It is well 
known (see /12/, for instance) that the potential c,(.) is a generalized solution of the funda- 
mental Eq;(1.5) and satisfies the boundary condition c,(6.x) = o(r). However, this necessary 
condition is not sufficient. Examples can be given in which the fundamental Eq.(1.5) has an 
infinite set of generalized solutions satisfying the boundary condition ~(6, 5) = o(z) (r ER"). 

In Theorem 2.1 below we have indicated necessary and sufficient conditions which a con- 
tinuous potential must satisfy. Next, in Theorems 2.2 and 2.3 these conditions are defines 
more exactly for the cases when the value function belongs to class Lip and is direction- 
differentiable. The conditions indicated in Theorem 2.3 can be treated as a natural generaliz- 
ation of the fundamental equation. 

2. Let us consider the stability properties of functions (t, z)++ c(t, z). Theseproperties, 
augmented by the boundary condition 

c (0, x) = u (x) (x E R") (2.1) 

form necessary and sufficient conditions which must be satisfied by the potential of different- 
ial game (l.l)- (1.3). We remark that stability properties were introduced in /3,4/forstable 
bridges in an encounter-evasion game. The stability properties can be defined in different 
equivalent forms. In particular, we present below an infinitesimal form of the stability 

property, which leads to a generalization of the fundamental equation. 
We introduce some notation. Let (t,z,u,v)E(--cr,81 S Rn X P X Q. We set 

F, (t, 5, U) = co {f (t, 5, u, v): u E P} (2.2) 

F, (t, 5, u) = co {f (t, 5, U, u): v E Q) 

where co A is the convex hull of set A. By X, (t*,z*, v) and X, (t*. z*, U) we denote the sets of 
solutions of the differential inclusions 

t' (t) E J', (t, z (t), u), 5' (t) E F, (t, z (& u), (t* Q t < +-', 2 (&) = I*) (2.3) 

respectively. We remark that for any (t*, x.+)E(- 00, 

r*, u) and Xz (&,r,, 
61 x R”, UFP and 7~~0 the sets Xr(t,, 

u)are nonempty and compact in the space of continuous functions 5 (.): [t,, 
+I++ R”. For a continuous function c(.)(-m, 61 x Rnct R we define two conditions: 

when (~*,z,)E(- w, 0) X R", tE[t*, 61, VEQ, “(.)EXl(t*~~*~u) 

(Iv) inf minminT(a; [c(t,z(t)) - c&.,x,)] > 0 
U.8 x,1 f u 

when (t*, I+) E (- co. Oj x R". t E It*, 61. aEp, x(.)EXz(t*,r*, U)* Inequalities (lU) 
and(l,)arecalled, respectively, the conditions of U-and u-stability of function c(.). 

Theorem 2.1. In order that a continuous function c(.)(- 00,81 X R*H R be the potent- 
ial of differential game (l.l)- (1.3), it is necessary and sufficient that it satisfy the 
boundary condition (2.1) and the stability conditions (IJ, (I,.). 

Theorem 2.1 follows from the results in /4/; it was proved in /15/ (pp.116-118). 
The stability conditions (I,,) and (IV) for a continuous function c(.)can be determined in 

various equivalent forms. Consider the following conditions: 

(t~y~‘xP,maxyf:m;x [c(f, z(t)) - c(t,,z,)l.SO 

su, suVp inf lim [c(t* + 6,3:(1* + 6))- c(t,,z,)].~Y',<O 
U*,X*) v XC.) 070 

Conditions (Z,), (3,) and (4,) are obtained from (2,),(3,) and (4y) by a respective replacement of 
v by u, of v by P, of X, (t*,-~*, v)by X, (t,,x,, u), and of the symbols max, min, sup, inf, Q , by 
the opposite ones. 

Lenma 2.1. Conditions (I,,), (2,), (3,) and (4,) are equivalent. 

Lemma 2.2. Conditions (I,), (Z,.), (3,) and (4,) are equivalent. 

Proof of Lemma 2.1. The implications (z,)+ (I,), (z,)+. (4,,)+ (3,) are trivial. It can be 
shown that (2,) follows from (1,) - Indeed, let (&,z.)E(-m, S)xlZ8‘, UEQ, k is a positiveinteger, 
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bk = (6 - t*) k-‘, Tlb = f* + i.6h (i = 0, 1, ., k). It follows from (I,,) that a motion z(k) (*) E x, (t*, .r*. v) 
exists satisfying the conditions 

c (Z,('), z(*)(T,@))) < c (I,, s*) (i = 0, 1,. . ., h) (2.4) 

Let us consider the sequence z (")(.) (h- = 1,2,. .) of such motions. Since X, (t.,, 5,, ti) is a compactum, 
it contains the limit element s*(.) of this sequence. From (2.4) and the continuity of func- 
tion c (.) it follows that c (1, Z* (1)) .< c (t,, z*) for t, T t d 6; by the same token we have proved the 
fulfillment of condition (2,). It remains to verify that (i,,) follows from (3,). Assume the 
contrary. Let condition (3,) be fulfilled, but let (t*, z,,) E (- M, a) x R”, u E Q, a > 0, t” t A> 61 

exist such that 

Set 

min c (t', .c (to))> c (t*, 2J + a, +(.) E XIV,! I*, u) (2.5) 
XC.1 

Z* (Z (.)) = max (t E [tr. t"]: C(t, 2 (1)) < C(t,, Z*j +Ct Ct ~- t+) (1” -- t,)-k) (2.6) 

The functional T*(.) is upper-semicontinuous; therefore, in compactum X1(&, z,, c) we can choose 
a motion z,(.) such that 

r*(x*(.)) =I;;:r* (Z(.))> 3 (') 6s X, (G. z*, L%) (2.7) 

Let f* = 7* (2,(.)), Z* = 5* it*); then 

c (I*> z') = C (t*, 5*) $ E (P - t,), E = (t" - t*)-'a (2.8) 

From (2.5)- (2.7) follows f*<I'. On the strength of (3,) there exist 6 E(O,~'--*) and motion 
z* (.) E x1 (t*, z*. n) such that 

c (t* + 6, z* (t* + 6)) .< c @*, z*) + ES (2.9) 

Consider the motion z (.) = (z* (t) for f, < t 6 t*; .z* (I) for I* C I < 6). This motion is contained in 

sheaf X1(&,s,,v) and for it we have the valid inequality 

c (t* mj- 6, J (t* + 6)) .< c (1*, 5*) + E (P -I- 6 - Lx) i2.10) 

following from (2.8) and (2.9). By the definition of functional T,(.) we obtain %,(z(.)) >/*+ 
6, which contradicts the choice of the number t* (see (2.7) ). Lemma 2.1 is proved. Lemma 
2.2 can be proved analogously. 

Thus far we have examined continuous functions c(.). Now let c(.): (- 00, 61 > H"++ K, 
c (.) ELip. Let (t*, z*) E (- m,6) x R”, h E K”. We use the following notation: 

- 
D*c(t,,x,)I(1,h)= lim [c(l* + 6,~~ - h6) - ~(t*,x,)l 6-J 

6-tko 

D,c (t*. qJ ICI, 12) = lim [c (t* + 6, q+ + h6) - c (t*, Z.J] 6-l 
6- t-0 

i.e., here we have introduced the upper and lower derivative numbers of function c(.) at the 

point (t*, z*) in the direction of an (n $- I)-dimensional vector (1, h,,. ., h,). If D*c (t*, x*) / 
(1, h) = D,c (t*, z*) 1 (1, h), then at the point (t*, z*) the function c(.) has a derivative along 

the direction of (l,h), which is denoted Dc(t,, z*) [ (1, h). Below we use the following notation: 

AC (t,,z,, z (.), 6) = c (t* + 6, z (t* + 6)) - c (&v %) 

Lenma 2.3. Let c (.) E Lip. The inequalities 

inf lirn Ac(t,,x,, - 
- XC.) 6d-1 0 

x(.),6)6-‘,(i1hlfD*c(t*,~*)I(1,I1)~ inf Ilm Ac(L~*~x(.),Q.S-’ 
,I(.) b-+0 

(2.11) 

5 (.) E x, (f*, x*3 4, h E F, ct*, 5*, 4 

sup lim AC (t*, z*, x(.), 6)6-‘,( sup D*c(t,, z.,J! (1,h) 
- 

-<SUP hm Ac(t*, z*, x(.)7 6) 6-l (2.12) 
X(.) 6-10 h I(.) 6-r 0 

z (.) E X, (t*, z*, u), 11 E F, (b, G, u) 

are valid for any (t*,x,)E(- m,e) ic K", UE Q, and UEP. 

Proof. Let us prove the first of inequalities (2.11). Let (f,,z,J E (- m,t+) X R", u t V, e 

> 0. We choose h, G F, (t*, z>, V) and a sequence &(k= 1.2,. . .),ht-+O as k-x, such that 
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From the continuity of the multivalued mapping (t, ) z l-+P~@,Z,F) of (2.2) follows 
of a solution z* (.f E X1 (ftr5*,t.) (see (2.3)) such that 

We set 

G+ (t* + 6k) =z*+ &h, + gkbk, (ilgkll-‘6 k--w) 

rk = [C(t*-thk. s*(tl+6e))--c(t.~~~"*+6Lh4)]8k1 

From (2.14), by virtue of the condition c(.)~ Lip, we obtain 

rk--n, k-oc 

From (2.13)- (2.16) follows 

inf tim Ac(~*,z*,z(.), d)a-l~fimAc(t~,~~,~l(.). b,)$'= 
xi,>bqo P-0 

;im+rcft,+ 6,, 2++h*ak) --c(f*, Z,)I 6~1~ 

i;inf&c(&, z*)t(l, 4 +F, fa E J-1 (I*, 5*, VI 

Since E>O is arbitrary here, we obtain the first one of inequalities (2.11). 
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the existence 

(2.14) 

(2.15) 

(2.16) 

Wow we choose a motion z*(.)E X1@,, z., n) and a sequence &>O(k= 1, 2,. . ., h-0 as k -+ DO) 

such that 
inf Kii Ahc(t*,s*, r(.), a)a-l>limA~(tt, z*.xt(.). ak)6;*-E 
XC. ) CT--to k-m 

From the continuity of mapping (t,z) H F,(t,z,u) it follows that 

% (t* $ 6,) = G -t hk%-tgk*b @k E F, Pr, zt s u), II ok* II - 0, k-t 00) 

Set F, (t*, 5*, u)is compact and, therefore, from the sequence hk(k= 1. Z,...) we can choose a 
subsequence converging to the limit h, E ~,(t,, 5_ $, Fcr simplicity of notation we assUme 
that hti - h, E Fl (t*, z,, 0) as Ii - 00. Then we arrive at (2.14) wherein ga=gk*+h,- 9. From (2.141 
- (2.17) follows 

inf G Ac(f, x*, 
XC.) Q-l-0 

z(.), a)a-l+Eh fim ACT,, 2*, r,(.), 6k).h;‘2 t-c.2 
iafD*c(f*, %)I (1, h), h=P,(t,,=,, 
h 

V)> z(.)=Xx,(t*, z*r u) 

Here again e>O is arbitrary, and, therefore, we obtain the second of inequalities (2.11). In- 
equalities (2.12) are proved by the same scheme. 

From Theorem 2.1 and Lemmas 2.1-2.3 follows 

Theorep 2.2. In order that a function c(.) belonging to class I,ip be the potential of 
differential game (l.l)- (1.3), it is necessary and sufficient that it satisfy the boundary 
condition (2.1) and that the inequalities 

SUP inf 
r;EQ h~Fdt., x,. u) 

D,c(t,,s*) 1(1,4<0, 

inf SUP 
ilEP hEF*(f,, X*, P) 

D*c(t*,J*) /(1,fz)>O 

be fulfilled at each position (t*, xe)E(- m,8) X Rn. 
In /13/ it was remarked that in the formulation of the necessary and sufficientconditions 

for the potential c(.)the upper derivative numbers can be replaced by the lower derivative 
numbers and Vice versa; this has turned out tobeunjustified and to date we have been un- 
albe to prove it or to refute it. 

By Dif we denote the collection of functions c(.) which at any point (t*, r*)E(- 00, 6) X 
R” have a derivative along any direction (1, h). h E R". 
can refine Theorem 2.2 as follows. 

For a function c(.)E I,ip 0 Dif we 

Theorem 2.3. In order that a function c(.)belonging to class tip n Dif be the potential 
of differential game (l.l)- (1.3), it is necessary and sufficient that it satisfytheboundary 
condition (2.1) and that the inequalities 

be fulfilled at each position (t*,z,)E (- co,@) X Rn . 
We note here that the maximum and the minimum are reached here, since for a function C(.) 



154 A-1. Subbotin and N.N. Subbotina 

of class Lip n Dif the mapping /L- D c(f,, I*) ](I, h)satisfiesa Lipschitz condition, the multi- 
valued mappings v * F,(t,, xs, v) and u ++ Fz(t*, x*, u) are continuous, and the sets F,(t,, x*, u), 
Fz (t*, I*, u), P and Q are compact. 

Notes. . i" Theorems 2.1-2.3 have been fommlated for a potential defined in the whole 
position space (- ;o,ft]x Rn. It can be shown that they remain valid in any domain of the 
form 

((I, 2): 100 < t < 6. a <C (t, 3) < B1 

2O. If function c(.) is differentiable at point @.,I,) then 

DC@,, CC*) 1 (I, h) = ac (t*, z*):3t+ h'grad,c (I,. z,) 

Therefore, equality (1.5) follows from (1.2) and (2.18), i.e., we obtain the necessary condi- 
tion stated at the end of Sect.1 for the potential. 

3O. The results obtained above carry over to the case of differential games in which 
condition (1.2) can be violated. A transition from the payoff functions (1.3) to payoffs of 
other types is possible as well; for example, p(z(.))= mini o(t,s(~)) for c*<t<6. The corres- 
ponding results have been formulated in /13/. 

3. Let us determine certain classes of direction-differentiable functions. Let I and J 
be finite sets, 'pij(.): (- co, 61 ): R" + R(i ~1, jeJ) be continuously differentiable functions. 
We define a piecewise-smooth function 

(t, 5) ++ C (t, 5) = yz max Cpij (t, z) 

jEJ 
(3.1) 

The piecewise-smooth function if direction-differentiable and the fomlula 

Dc(t,,x,)j(i,h)= min,maxj[acpij(t,,s,)/at + ~~'gra&cpij(t*, ~*)l, (3.2) 

i E IO (t*, X*), j E JO (t*, X*, i) 

lo (t*, X*) = {ill E I : 1;:; q&j (t*> X*) = c (t*v X*)1 

Jo(t,,X,,i)= {j. E J: I;z:Qj(t*, z*) =%j.(t*vz*)l 

is valid /l/. We introduce one more type of direction-differentiable functions c(.). Let S 
be a nonempty set. Let n be some set of scalar functions n(*):S cc fl. A functional mix:D e 
R is defined on set II. 

mix n (s). 
The value that the operation mix associates with the function n(.) 

is denoted We assume that the functional mix 

x(.)En, r E-7 

has the following properties. If 
then the functions s++ n(s) + r and s++ 1 r 1 n(s) as well belong to 11 

and the equalities 

mix (r + n(s)) = I^ + mix n (s), mix 1 r 1 n (s) = 1 r 1 mix n (s) 
s s s E 

are valid. If ni (.) E II (i = 1, 2) and n, (s) < n2 (s) (s < S), then 

mix n, (s) < mix x2 (s) 
s s 

Let (t, z)++ c(l, x) be a continuous function. We say that function c(e) is regular at the 
point (t*,s,)E(- c0,6) X Rn if the relations 

c (t, z) = mix, cp (6 x, s) ((t, 5) E Qa (t*, 4) (3.3) 

c G*, r*) = cp (t*, 5*, s) - (s E S) 
0, (t*, x*) = {(t, x): t, < t < t, + a, II 5 - 5* /I < e} 

are fulfilled for some a E (0, 6 - t*) . Here the function rp(.): Oa(t*, z*) X s ++ fi satisfies 
the following conditions: grad,cp (t,z,s) and the right derivative a'p (t*,,s*, s)/at exist for any 

SES; furthermore, . 

In (3.3) mix is an operation of the foml indicated. It is assumed that 

'p (t, X, .) E n, [a’p (t*, x*, .)idt + h’ grad, w (t*, x*, *)I En 

v (t, 2) E 0, (t*, x*), h E I? 

A function c( .) of form (3.3) is differentiable at point (t*. .z*) along the direct ion (1, 1z), and 

lim SUP I ‘P (t, X, 8) - ‘P (t*, X*, s) - (t - t*) a’p (L x*, s)m - 
(1, x)-u,, x.1 ES 

(X--r,~g~ad,cp(t,,X,,s)I(It-tt,I+IIX-Xs,II)-’=O 

suu! I@ (t*, X*, s)/asi I < 00 (i = 1, . . ., n) 
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DC (t*, z*) ](I, h) = mix k%p (t*, x,,s)!& t h' grad cp (t*, z*, s)] (3.4) 
8 x 

We note that the above-defined properties of operation. mix coincide completelywiththe 
properties, indicated in /6/, of the functional Val(.):o ++ val (o), where Val (u) is the value 
of a differential game with payoff (J (for a fixed initial position). 

Using the expressions for derivatives (3.2) and (3.4) we can make Theorem 2.3 concrete 
for piecewise-smooth functions (3.1) and for functions c(.) regular in the domain (- cc~6) :< 
R*. 

In conclusion we present a corollary to Theorem 2.3 for an optimal control problem. In 
this problem we are required, by choosing a programmed control u(.): [f,, 61~ P, to minimize 
the value of functional c (.z (fi, t,, z*, u (e))), where I (., t,, x*, u(.)) is amotion of the controlled 
system 

I’ (t) = f (6 32 (0, u (d), 5 O*) = t* 
Forsimplicityweassume thatthe set F(1,3.) = {f(t, 5, U): u E p} is convex foranypoint (t,.r). The 
quantity p0 (t** +) = min,(.) c (x (8, t,, +, u (.))) is called theoptimalresultin the control problem 
and the function(t,, z*) + p,, (t*, x,) is calledthepotentialinthe controlproblem. The potential 

(10 (.) coincides with the potential rg (.) of the differential game in which f(t, I, U, C) = f(t, x, 
u)+U, VEQ={O}CR", i.e., the second player is in fact absent. Assume that the func- 

tions c (*)and f(.) are differentiable. Then, according to /5/, the potential PO(.) is direct- 
ion-differentiable. The next theorem is a corollary of Theorem 2.3. 

Theorem 3.1, In order that the function (t,x) * p (t.r) be the potential in the control 
problem being examined, it is necessary and sufficient that the relations 

FL; D P (t, 4 I (1, f (6 3, u)) = 0 (3.5) 

be fulfilled. 

p (8, x) = (J (5), (t E (- 00, a), x E X") (3.6) 

We remark that a necessary condition for potential PO (.)> close to equality (3.5), was 
obtained in /5/. 
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